Math, asked by ykumkum4042, 8 months ago

Find the value of Sin^-1(0.6)

Answers

Answered by Anonymous
5

\bf\underline {Given},

sin(2sin^{-1}(0.6))

Let,

sin^{-1}(0.6)=A -------(1)

\implies sin A = 0.6

\implies \sqrt{1-cos^2A} = 0.6    ( Since, {sin}^{2} A + {cos}^{2}A = 1 ⇒ {sin}^{2}A = 1 - {cos}^{2}A ⇒ sin A = \implies(1-{cos}^{2} A )

1-cos^2A = 0.36

cos^2A= 1-0.36 = 0.64

\implies cos A = 0.8

\bf\underline{We\: know \:that},

sin 2A = 2 sin A cos A = 2\times 0.6\times 0.8=0.96

\bf\underline{From\: equation\:(1)},

\implies sin 2[sin^{-1}(0.6)]=0.96.

Similar questions