Math, asked by lahareakhilesh2005, 4 months ago

Find the value of sinθ/(1+cosθ) + (1+cosθ)sinθ​

Answers

Answered by tarracharan
0

 \frac{ \sin(x) }{(1 +  \cos(x)) }  +  \frac{(1 +  \cos(x)) }{ \sin(x) } \\   \\  =  \frac{ { \sin^{2} (x) +(1 +  \cos(x))^{2}   } }{ \sin(x)(1 +  \cos(x)) }   \\ \\  =   \frac{\sin^{2} (x)  +  \cos^{2} (x)  + 1 + 2 \cos(x) }{ \sin(x)(1 +  \cos(x)) }  \\  \\  = \frac{1 + 1 + 2 \cos(x) }{ \sin(x)(1 +  \cos(x)) }  \\  \\ =  \frac{2+ 2 \cos(x) }{ \sin(x)(1 +  \cos(x)) }  \\ \\  = \frac{2(1 +  \cos(x)) }{ \sin(x)(1 +  \cos(x)) }  \\ \\  =  \frac{2}{ \sin(x) }

Similar questions