Find the value of (sin 11 + cos 11) / (sin 11 - cos 11).
Answers
Answered by
0
Answer:
Solution:
RHS
\frac{\cos 11+\sin 11}{\cos 11-\sin 11}
Divide numerator and denominator by cos11
Hence the equation becomes
\frac{1+\tan 11}{1-\tan 11} \ldots(1)
By formula,
\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}
Bringing eq(1) in the above form,
\frac{1+\tan 11}{1-\tan 11}=\frac{\tan 45+\tan 11}{1-(\tan 45)(\tan 11)}
\frac{\tan 45+\tan 11}{1-(\tan 45)(\tan 11)}=\tan (45+11)=\tan (56)
\begin{array}{l}{\tan 56=\tan (90-34)} \\ {\tan (90-\mathrm{A})=\cot \mathrm{A}}\end{array}
Hence \tan (90-34)=\cot 34= RHS
\bold{\frac{\cos 11+\sin 11}{\cos 11-\sin 11}=\tan 56 \text { or } \cot 34}
LHS = RHS
Hence proved.
Similar questions