find the value of sin 15
Answers
Answer:
√3-1/2√2
Step-by-step explanation:
sin(45-30)= sin45cos30-cos45sin30
1/√2×√3/2-1/√2×1/2
√3-1/2√2
Answer:
Sin 15 = (√3−1)/(2√2)
(Sin P/2 + Cos P/2)2 = Sin2 P/2 + Cos2 P/2 +2Sin P/2Cos P/2
= 1 + sinP
Sin P/2 + Cos P/2 = +– √ (1 + sin P)
If P = 300 so P/2 = 30/2 =150
Putting this value in the above equation:
Sin 150 + Cos 150 = +– √ (1 + sin 30) …(1)
Also, (Sin P/2 – Cos P/2)2 = Sin2 P/2 + Cos2 P/2 – 2Sin P/2Cos P/2
= 1 – sinP
Sin P/2 – Cos P/2 = +– √ (1 – sin P)
Putting this value in the above equation:
Sin 150 – Cos 150 = +– √ (1 – sin 30) …(2)
As seen, sin 15° > 0 and cos 15˚ > 0
hence, sin 15° + cos 15° > 0
From (1) we will get,
sin 15° + cos 15° = √ (1 + sin 30°) …(3)
Also, sin 15° – cos 15° = √2 (1/√2 sin 15˚ – 1/√2 cos 15˚)
or, sin 15° – cos 15° = √ 2 (cos 45° sin 15˚ – sin 45° cos 15°)
or, sin 15° – cos 15° = √ 2 sin (15˚ – 45˚)
or, sin 15° – cos 15° = √ 2 sin (- 30˚)
or, sin 15° – cos 15° = -√ 2 sin 30°
or, sin 15° – cos 15° = -√ 2 x 1/2
or, sin 15° – cos 15° = – √2/2
So, sin 15° – cos 15° < 0
Now we got, from (2) sin 15° – cos 15°= -√(1 – sin 30°) … (4)
add (3) and (4) we get,
2 sin 15° = √ (1 + ½) – √ (1 – ½)
2 sin 15° = (√3−1)/√2
∴ sin 15° = (√3−1)/2√2