Math, asked by harimohanr43, 8 months ago

find the value of sin^2 30°+ cos^2 30°+ cot^2 45°​

Answers

Answered by Anonymous
5

Answer :-

sin²30°+ cos²30°+ cot²45° = 2

To find :-

  • sin²30°+ cos²30°+ cot²45°

Solution :-

we know,

 \longrightarrow  \sf  \sin {30}^{0}  =  \frac{1}{2}  \\

 \longrightarrow  \sf cos {30}^{0}  =  \frac{ \sqrt{3} }{2}  \\

 \longrightarrow \sf cot {45}^{0}  = 1

so,

 \longrightarrow \sf \bigg( \frac{1}{2} \bigg) ^{2}  + \bigg( \frac{ \sqrt{3} }{2} \bigg)^{2}  +(1)^{2} \\

  \longrightarrow \sf  \frac{1}{4}  +  \frac{3}{4}  + 1 \\

 \longrightarrow \sf  \frac{1 + 3 + 4}{4}  \\

 \longrightarrow \sf \cancel  \frac{8}{4}  = 2 \\

Hence,sin²30°+ cos²30°+ cot²45° = 2

Similar questions