Math, asked by prathemesh9654, 1 year ago

Find the value of sin 20 degree sin 40 degree sin 80 degree

Answers

Answered by harshverma91
5
since,sin60=√ 3/2

= √ 3/2( sin20sin40sin80)

=√ 3/2( sin20sin80sin40)

=√ 3/4 [(2sin20sin40)sin80]

on applying [cos(A-B)-cos(A+B) = 2sinAsinB]

we get,

= √ 3/4 (cos20-cos60)sin80 [since,cos(-a)=cosa]

= √ 3/4(cos20sin80-cos60sin80)

= √ 3/8(2sin80cos20-sin80)

= √ 3/8(sin100+sin60-sin80)

= √ 3/8( √ 3/2+sin100-sin80 )

= √ 3/8( √ 3/2+sin(180-80)-sin80 )

= √ 3/8( √ 3/2+sin80-sin80 ) [since,sin(180-a)=sina]

= √ 3/8( √ 3/2)

= 3/16

Answered by HexerHex
0

Answer:

\frac{\sqrt{3} }{8}\\

Step-by-step explanation:

sin 20° sin 40° sin 80°

Use the format -  sin A sin (60-A) sin (60 +A) = \frac{1}{4} sin 3A

sin 20 sin (60-20) sin (60+20) = \frac{1}{4} sin 3×20

\frac{1}{4} sin 60

\frac{1}{4} ×\frac{\sqrt{3} }{2} = \frac{\sqrt{3} }{8}

Hence Proved!

Similar questions