Math, asked by latikakanal, 1 month ago

Find the value of sin 20° sin 40° sin 80°​

Answers

Answered by Anonymous
14

Given to find the value of :-

sin20° . sin40° . sin80°

Formula to know :-

{sin\theta \times sin(\alpha-\theta) \times sin(\alpha+\theta) = \dfrac{1}{4}sin3\theta}

SOLUTION:-

sin20° × sin40° × sin80°

sin40° can be written as sin(60°-20°)

sin80° can be written as sin(60°+20°)

= sin20° × sin(60°-20°) × sin (60° +20°)

It is in form of {sin\theta \times sin(\alpha-\theta) \times sin(\alpha+\theta) = \dfrac{1}{4}sin3\theta}

Since here {\theta = 20^{\circ}}

{sin20^{\circ} \times sin40^{\circ} \times sin80^{\circ} = \dfrac{1}{4} sin3(20^{\circ}})

{sin20^{\circ} \times sin40^{\circ} \times sin80^{\circ} = \dfrac{1}{4} sin(60^{\circ}})

Also we know that sin60° = √3/2

{=} \dfrac{1}{4} \times \dfrac{\sqrt{3}}{2}

{=} \dfrac{\sqrt{3}}{8}

So, the value of sin 20° sin 40° sin 80° = √3/8

Know more :-

{cos\theta \times cos(\alpha-\theta) \times cos(\alpha+\theta) = \dfrac{1}{4}cos3\theta}

{tan\theta \times tan(\alpha-\theta) \times tan(\alpha+\theta) = tan3\theta}

{cot\theta \times cot(\alpha-\theta) \times cot(\alpha+\theta) = cot3\theta}

{sin^2\theta \times sin^2(\alpha-\theta) \times sin^2(\alpha+\theta) = \dfrac{3}{2}}

{cos^2\theta \times cos^2(\alpha-\theta) \times cos^2(\alpha+\theta) = \dfrac{3}{2}}

Similar questions