find the value of Sin 215degree+Sin 225degree+sin 265degree+sin275degree is
Answers
To Find :-
- sin215° + sin225° + sin265° + sin275°
Formula used :-
- sin(180+θ) = - sinθ (3rd Quadrant).
- sin(360 - θ) = - sinθ (4th Quadrant).
- sinC + sinD = 2*sin(C+D/2) * cos(C-D/2)
Solution :-
→ sin215° = sin(180° + 35°)
→ sin(180+θ) = - sinθ
So,
→ sin215° = - sin35°
Similarly,
→ sin225° = sin(180° + 45°)
→ sin(180+θ) = - sinθ
So,
→ sin225° = - sin45°
And,
→ sin265° = sin(360° - 95°)
→ sin(360 - θ) = - sinθ
So,
→ sin265° = - sin95°
Similarly,
→ sin275° = sin(360° - 85°)
→ sin(360 - θ) = - sinθ
So,
→ sin275° = - sin85°
___________________
So,
→ sin215° + sin225° + sin265° + sin275°
Putting All Values we get,
→ - sin35° - sin45° - sin95° - sin85°
→ - [ sin35° + sin45° + sin95° + sin85°]
→ - [(sin95° + sin35°) + (sin85° + sin45°)]
using sinC + sinD = 2*sin(C+D/2) * cos(C-D/2) Now,
→ - [ {2*sin(95+35)/2 * cos(95 - 35)/2 } + {2*sin(85+45)/2 * cos(85 - 45)/2 }]
→ - [ (2*sin65°*cos30) + (2*sin65°*cos20°) ]
→ - [ {2 * sin65° * (1/2)} + (2*sin65°*cos20°) ]
→ - [ sin65° + 2*sin65°*cos20° ]
→ (-sin65°) [ 1 + 2cos20°] (Ans).
QUESTION :
Find the value of Sin 215° + Sin 225° + sin 265° + sin275° .
SOLUTION :
We know that :
Sin is + ve in the 1 st and 2 nd quadrant
Sin is - ve in the 3rd and 4th quadrant.
Sin 215 ° = Sin ( 180 +35 ) ° i.e - sin ( 35°)
Sin 225 ° = Sin ( 180 +45 ) ° i.e - sin ( 45°)
Similarly sin 265° = - sin 95
Sin 275 ° = - sin 85
Now using Sin C + Sin D Fromula :
=> - [ Sin 85 + Sin 95 + sin 35 + sin 45 ]
=> - sin 65 { 1 + cos2• } ..........(A)