Math, asked by Anonymous, 1 month ago

Find the value of sin 23° using appropriate methods.
Answer without any explanation would be considered as spam.

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:sin23 \degree

in radians can be represented as

\rm \:  =  \: sin\dfrac{23\pi}{180}

We use concept of differentiation to find the approximate value of ain23°.

Let we assume that

\rm :\longmapsto\:f(x) = sinx \:  \: where \: x \:  = \dfrac{\pi}{6}

So,

\rm :\longmapsto\:f(x + h) = sin(x + h) \:  \: where \: h \:  =  - \dfrac{7\pi}{180}

Using Approximations, we have

\rm :\longmapsto\:f(x + h) = hf'(x) + f(x)

On substituting the values, we get

\rm :\longmapsto\:sin(x + h) = h \: cosx + sinx

\red{\bigg \{ \because \:as \: f(x) = sinx \:  \: so \:  \:  f'(x) = cosx\bigg \}}

Now, on substituting the values of x and h, we have

\rm :\longmapsto\:sin\bigg(\dfrac{23\pi}{180} \bigg) =  - \dfrac{7\pi}{180}cos\dfrac{\pi}{6}  + sin\dfrac{\pi}{6}

\rm :\longmapsto\:sin\bigg(\dfrac{23\pi}{180} \bigg) =  - \dfrac{7\pi}{180} \times  \dfrac{ \sqrt{3} }{2} +  \dfrac{1}{2}

\rm :\longmapsto\:sin\bigg(\dfrac{23\pi}{180} \bigg) =  -7 \times  \dfrac{3.14}{180} \times  \dfrac{1.732}{2}   + 0.5

\rm :\longmapsto\:sin\bigg(\dfrac{23\pi}{180} \bigg) =  -  0.1058 + 0.5

\rm :\longmapsto\:sin\bigg(\dfrac{23\pi}{180} \bigg) =  0.3942

\bf\implies \:sin23 \degree \:  =  \: 03941

Additional Information :-

\red{\boxed{ \rm{ \frac{d}{dx}sinx = cosx}}}

\red{\boxed{ \rm{ \frac{d}{dx}cosx =  -  \: sinx}}}

\red{\boxed{ \rm{ \frac{d}{dx}cosecx =  -  \: cosecx \: cotx}}}

\red{\boxed{ \rm{ \frac{d}{dx}secx =   \: secx \: tanx}}}

\red{\boxed{ \rm{ \frac{d}{dx}tanx =   \: sec^{2} x \:}}}

\red{\boxed{ \rm{ \frac{d}{dx}cotx =   \:  -  \: cosec^{2} x \:}}}

Similar questions