Math, asked by luckymidris, 11 months ago

find the value of sin 28 degree ÷ cos 62 degree​

Answers

Answered by michael79
0

We must recall the relationship between trigonometric ratios

\cos(90-\theta)=\sin\theta

Given: \frac{\sin 28^\circ}{\cos 62^\circ}

We can write the denominator as

\cos 62^\circ=\cos(90^\circ-28^\circ)

We know,  \cos(90-\theta)=\sin\theta

\implies\cos62^\circ=\sin28^\circ

So the value is

\implies\frac{\sin 28^\circ}{\cos 62^\circ}=\frac{\sin 28^\circ}{\sin 28^\circ}\\\\\implies1

Hence the value of \frac{\sin 28^\circ}{\cos 62^\circ}=1

Answered by pulakmath007
1

\displaystyle \sf{ \frac{cos \: {28}^{ \circ} }{sin\: {62}^{ \circ}}    } =  \bf 1

Given :

The expression

\displaystyle \sf{ \frac{cos \: {28}^{ \circ} }{sin\: {62}^{ \circ}}    }

To find :

The value of the expression

Formula :

sin( 90° - θ ) = cos θ

Solution :

Step 1 of 2 :

Write down the given expression

The given expression is

\displaystyle \sf{ \frac{cos \: {28}^{ \circ} }{sin\: {62}^{ \circ}}    }

Step 2 of 2 :

Find the value of the expression

We use the formula

sin( 90° - θ ) = cos θ

Thus we get

\displaystyle \sf{ \frac{cos \: {28}^{ \circ} }{sin\: {62}^{ \circ}}    }

\displaystyle \sf{  = \frac{cos \: {28}^{ \circ} }{sin\: ({90}^{ \circ} - {28}^{ \circ} )}    }

\displaystyle \sf{  = \frac{cos \: {28}^{ \circ} }{cos \: {28}^{ \circ}  }    }

 = 1

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If cosθ+secθ=√2,find the value of cos²θ+sec²θ

https://brainly.in/question/25478419

2. Value of 3 + cot 80 cot 20/cot80+cot20 is equal to

https://brainly.in/question/17024513

Similar questions