Math, asked by rajeshsurisetty8565, 10 months ago

Find the value of sin[π/3 - sin inverse of (1/2)

Answers

Answered by BendingReality
8

Answer:

\displaystyle \sf \longrightarrow  \frac{1}{2} \\

Step-by-step explanation:

We're asked to find value of :

\displaystyle \sf \sin\left(\frac{\pi}{3}-\sin^{-1}\left(\frac{1}{2}\right)\right) \\ \\

\displaystyle \sf \longrightarrow \sin\left(\frac{\pi}{3}-\sin^{-1}\left(\frac{1}{2}\right)\right) \\ \\

Rewrite 1 / 2 as sin π / 6 we get :

\displaystyle \sf \longrightarrow \sin\left(\frac{\pi}{3}-\sin^{-1}\left(\sin\frac{\pi}{6}\right)\right) \\ \\

Since sin inverse quantity lie in interval [ - π / 2 , π / 2 ]

= > We can directly write ' π / 6 ' there!

\displaystyle \sf \longrightarrow \sin\left(\frac{\pi}{3}-\frac{\pi}{6} \right) \\ \\

\displaystyle \sf \longrightarrow \sin\left(\frac{\pi}{3} \right) \\ \\

\displaystyle \sf \longrightarrow  \frac{1}{2} \\ \\

Hence we get required answer!

Answered by HeartCrusher
3

Answer:

\displaystyle \sf \longrightarrow  \frac{1}{2} \\

Step-by-step explanation:

We're asked to find value of :

\displaystyle \sf \sin\left(\frac{\pi}{3}-\sin^{-1}\left(\frac{1}{2}\right)\right) \\ \\

\displaystyle \sf \longrightarrow \sin\left(\frac{\pi}{3}-\sin^{-1}\left(\frac{1}{2}\right)\right) \\ \\

Rewrite 1 / 2 as sin π / 6 we get :

\displaystyle \sf \longrightarrow \sin\left(\frac{\pi}{3}-\sin^{-1}\left(\sin\frac{\pi}{6}\right)\right) \\ \\

Since sin inverse quantity lie in interval [ - π / 2 , π / 2 ]

= > We can directly write ' π / 6 ' there!

\displaystyle \sf \longrightarrow \sin\left(\frac{\pi}{3}-\frac{\pi}{6} \right) \\ \\

\displaystyle \sf \longrightarrow \sin\left(\frac{\pi}{3} \right) \\ \\

\displaystyle \sf \longrightarrow  \frac{1}{2} \\ \\

And We Got The Required Answer.

Similar questions