find the value of sin 36°
Answers
Answer:
Let A = 18°
Let A = 18° Therefore, 5A = 90°
Let A = 18° Therefore, 5A = 90° ⇒ 2A + 3A = 90˚
Let A = 18° Therefore, 5A = 90° ⇒ 2A + 3A = 90˚⇒ 2θ = 90˚ - 3A
Let A = 18° Therefore, 5A = 90° ⇒ 2A + 3A = 90˚⇒ 2θ = 90˚ - 3ATaking sine on both sides, we get
Let A = 18° Therefore, 5A = 90° ⇒ 2A + 3A = 90˚⇒ 2θ = 90˚ - 3ATaking sine on both sides, we get sin 2A = sin (90˚ - 3A) = cos 3A
Let A = 18° Therefore, 5A = 90° ⇒ 2A + 3A = 90˚⇒ 2θ = 90˚ - 3ATaking sine on both sides, we get sin 2A = sin (90˚ - 3A) = cos 3A ⇒ 2 sin A cos A = 4 cos3 A - 3 cos A
Let A = 18° Therefore, 5A = 90° ⇒ 2A + 3A = 90˚⇒ 2θ = 90˚ - 3ATaking sine on both sides, we get sin 2A = sin (90˚ - 3A) = cos 3A ⇒ 2 sin A cos A = 4 cos3 A - 3 cos A⇒ 2 sin A cos A - 4 cos3 A + 3 cos A = 0
Let A = 18° Therefore, 5A = 90° ⇒ 2A + 3A = 90˚⇒ 2θ = 90˚ - 3ATaking sine on both sides, we get sin 2A = sin (90˚ - 3A) = cos 3A ⇒ 2 sin A cos A = 4 cos3 A - 3 cos A⇒ 2 sin A cos A - 4 cos3 A + 3 cos A = 0 ⇒ cos A (2 sin A - 4 cos2 A + 3) = 0
Answer:
Step-by-step explanation:
brainliest brainliest brainliest brainliest brainliest brainliest brainliest brainliest brainliest brainliest brainliest brainliest brainliest brainliest brainliest