Math, asked by Anonymous, 3 months ago

Find the value of sin(40° +0)cos(10° +0)
-cos(40° + 0) sin(10° +0).​

Answers

Answered by mathdude500
4

Given Question :-

Find the value of

\:  \: \:  \bull \:  \sf \:sin(40 \degree \: +  \theta \:)cos(10\degree \: + \theta \:) - cos(40\degree \: + \theta \:)sin(10\degree \: + \theta \:)

ANSWER :-

We know that,

\rm :\longmapsto\:sinxcosy - sinycosx = sin(x - y)

\rm :\longmapsto\:Put \: x = 40\degree \: + \theta \: \:  \:  \: and \:  \:  \: y = 10\degree \: + \theta \:

We get now,

 \rm\: \:sin(40\degree \: + \theta \:)cos(10\degree \: + \theta \:) - cos(40\degree \: + \theta \:)sin(10\degree \: + \theta \:) \\  \rm \:  \:  =  \: sin(40\degree \: + \theta \: - 10\degree \: - \theta \:) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \rm\: \:sin(40\degree \: + \theta \:)cos(10\degree \: + \theta \:) - cos(40\degree \: + \theta \:)sin(10\degree \: + \theta \:) \\  \rm \:  \:  =  \: sin(30\degree) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \rm\: \:sin(40\degree \: + \theta \:)cos(10\degree \: + \theta \:) - cos(40\degree \: + \theta \:)sin(10\degree \: + \theta \:) \\  \rm \:  =  \: \dfrac{1}{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Additional Information :-

\boxed{{\bf \: cos(x +y) = cosxcosy - sinxsiny}}

\boxed{{\bf \: cos(x - y) = cosxcosy + sinxsiny}}

\boxed{{\bf \: sin(x + y) = sinxcosy + sinycosx}}

\boxed{{\bf \:  {sin}^{2}x -  {sin}^{2}  y = sin(x + y)sin(x - y)}}

\boxed{{\bf \:  {cos}^{2}x  -  {sin}^{2} y = cos(x + y)cos(x - y)}}

Similar questions