Math, asked by deepsa3Lovyaanushik, 1 year ago

Find the value of : sin ( 50 + theta ) - cos ( 40 - theta)

Answers

Answered by mysticd
318
sin(50+theta)- cos (40-theta)

= sin(90-40+theta) - cos(40-theta)
=sin[90-(40-theta)]- cos(40-theta)
=cos(40-theta)-cos(40-theta) since sin(90-theta)=cos theta
=0
Answered by FuturePoet
108

Here your answer goes

Step :- 1

Given ,

sin(50+theta)- cos (40-theta)

Sin 50° can be written as 90° - 45°

⇒ Sin (90 - 40 + theta ) - Cos ( 40 - theta )

Step :- 2

⇒ sin[90-(40-theta)]- cos(40-theta)

⇒ sin[90-(40-theta)]- cos(40-theta)

cos(40-theta)-cos(40-theta)

∴  sin ( 90 - theta ) = Cos theta

⇒ 0

Therefore ,  Sin ( 50 + theta ) - Cos( 40 - theta ) = 0

↓↓↓

Be Brainly

Together We go far →

Attachments:
Similar questions