Find the value of : sin ( 50 + theta ) - cos ( 40 - theta)
Answers
Answered by
318
sin(50+theta)- cos (40-theta)
= sin(90-40+theta) - cos(40-theta)
=sin[90-(40-theta)]- cos(40-theta)
=cos(40-theta)-cos(40-theta) since sin(90-theta)=cos theta
=0
= sin(90-40+theta) - cos(40-theta)
=sin[90-(40-theta)]- cos(40-theta)
=cos(40-theta)-cos(40-theta) since sin(90-theta)=cos theta
=0
Answered by
108
Here your answer goes
Step :- 1
Given ,
Sin 50° can be written as 90° - 45°
⇒ Sin (90 - 40 + theta ) - Cos ( 40 - theta )
Step :- 2
⇒ sin[90-(40-theta)]- cos(40-theta)
⇒ sin[90-(40-theta)]- cos(40-theta)
⇒
∴ sin ( 90 - theta ) = Cos theta
⇒ 0
Therefore , Sin ( 50 + theta ) - Cos( 40 - theta ) = 0
↓↓↓
Be Brainly
Together We go far →
Attachments:
Similar questions