Math, asked by lisasharma7225, 1 year ago

Find the value of sin (540-theta)

Answers

Answered by pal69
12

sin(3×180°-©)=-sin©.......

Answered by pinquancaro
10

The value of the expression is \sin(540-\theta)=\sin \theta

Step-by-step explanation:

Given : Expression \sin(540-\theta)

To find : The value of the expression ?

Solution :

Using trigonometric identity,

\sin(A-B)=\sin A\cos B-\cos A\sin B

Here, A=540 and B=\theta

\sin(540-\theta)=\sin 540\cos\theta-\cos 540\sin \theta

Now using values,

\sin 540 = \sin (180 + 360) = \sin 180 = 0

\cos 540 = \cos 180 = - 1

Substitute the values,

\sin(540-\theta)=(0)\cos\theta-(-1)\sin \theta

\sin(540-\theta)=\sin \theta

Therefore, \sin(540-\theta)=\sin \theta

#Learn more

Tan(-theta)/sin(540+ theta)

https://brainly.in/question/2276861

Similar questions