Find the value of
sin 7½°
Answers
Answered by
4
½° lies in the first quadrant.
Therefore, sin 7½° is positive.
For all values of the angle A we know that, cos (α - β) = cos α cos β + sin α sin β.
Therefore, cos 15° = cos (45° - 30°)
cos 15° = cos 45° cos 30° + sin 45° sin 30°
= 1√21√2∙√32√32 + 1√21√2∙1212
= √32√2√32√2 + 12√212√2
= √3+12√2√3+12√2
Again for all values of the angle A we know that, cos A = 1 - 2 sin22A2A2
⇒ 1 - cos A = 2 sin22 A2A2
⇒ 2 sin22 A2A2 = 1 - cos A
⇒ 2 sin22 7½˚ = 1 - cos 15°
⇒ sin22 7½˚ = 1−cos15°21−cos15°2
⇒ sin22 7½˚ = 1−√3+12√221−√3+12√22
⇒ sin22 7½˚ = 2√2−√3−14√22√2−√3−14√2
⇒ sin 7½˚ = 4−√6−√28−−−−−−−√4−√6−√28, [Since sin 7½° is positive]
⇒ sin 7½˚ = 4−√6−√2√2√24−√6−√22√2
Therefore, sin 7½˚ = 4−√6−√2√2√24−√6−√22√2...
thankyou
Therefore, sin 7½° is positive.
For all values of the angle A we know that, cos (α - β) = cos α cos β + sin α sin β.
Therefore, cos 15° = cos (45° - 30°)
cos 15° = cos 45° cos 30° + sin 45° sin 30°
= 1√21√2∙√32√32 + 1√21√2∙1212
= √32√2√32√2 + 12√212√2
= √3+12√2√3+12√2
Again for all values of the angle A we know that, cos A = 1 - 2 sin22A2A2
⇒ 1 - cos A = 2 sin22 A2A2
⇒ 2 sin22 A2A2 = 1 - cos A
⇒ 2 sin22 7½˚ = 1 - cos 15°
⇒ sin22 7½˚ = 1−cos15°21−cos15°2
⇒ sin22 7½˚ = 1−√3+12√221−√3+12√22
⇒ sin22 7½˚ = 2√2−√3−14√22√2−√3−14√2
⇒ sin 7½˚ = 4−√6−√28−−−−−−−√4−√6−√28, [Since sin 7½° is positive]
⇒ sin 7½˚ = 4−√6−√2√2√24−√6−√22√2
Therefore, sin 7½˚ = 4−√6−√2√2√24−√6−√22√2...
thankyou
Answered by
3
Hope it is useful for you .
Attachments:
Similar questions