Math, asked by shyladamu, 1 year ago

Find the value of sin 75°


shanamsudhar2222: clear i will tell easier

Answers

Answered by bharat9291
4
sin ( A+B ) = sin A * cos B + cos A * sin B
sin ( 30+45 ) = sin 30 cos 45 + cos 30 * sin 45
sin 75 = (1/2)*(1/√2) + (√3/2)*(1/√2)
sin 75 =( 1/2√2 )+ (√3/2√2)
sin 75 = (1+√3)/2√2
Answered by Swarnimkumar22
21

\bold{\huge{\underline{Solution-}}}

 \bf \: Used \:  formula -  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \bf \: sin \: (A + B) = sinA \: cosB + cosA \: sinB}

 \bf \: sin \: 75 \degree \:  = sin \: (45  \degree \: + 30 \degree) \:  \\  \\   \boxed{\because  \: 75\degree = 45 \degree + 30 \degree} \:  \\  \\  \bf \: now \: using \: the \: sin(A + B) \:where \: A = 45 \degree \: B = 30 \degree \:  \\ \\  \implies \bf \: sin \:45  \degree cos \: 30\degree + cos \: 45 \degree \: sin \: 30 \degree \:   \\  \\  \implies \bf \:  \frac{1}{ \sqrt{2} } . \frac{ \sqrt{3} }{2}  +  \frac{1}{ \sqrt{2} } . \frac{1}{2}  \\  \\   \implies \bf \:  \frac{ \sqrt{3} }{ \sqrt[2]{2} }  +  \frac{1}{ \sqrt[2]{2} }  \\  \\   \implies \bf \:  \frac{ \sqrt{3} + 1 }{ \sqrt[2]{2} }

Similar questions