Math, asked by Bitti13, 1 year ago

find the value of sin (-750) and sec 25\pi /8class 11 trigonometry question plz answer only if you are sure

Answers

Answered by KnowMyPain
0

sin(-x) = -sinx5

So, sin (-750) = - sin(750)

Now apply reduction formula.

By substracting 360 or its multiples from an angle, function remains same. Formula applied here is:

sinx = sin[x - (2×360)]

-sin(750) = - sin(750 - 720)

= - sin (30) = -1/2

sin ( \frac{25\pi }{8} ) = sin (\frac{25\pi }{8} - 4\pi )= sin (\frac{\pi }{8})

Now we know, cos2x = 1 - 2sin²x

So, sin x = \sqrt{\frac{1-cos2x}{2} }

sin (\frac{\pi }{8}) = \sqrt{\frac{1-cos(\frac{\pi}{4})}{2} }

= \sqrt{\frac{1-\frac{1}{\sqrt2}}{2}}

=\sqrt{\frac{2-\sqrt{2}}{2} } }

sin ( \frac{25\pi }{8} ) = \sqrt{\frac{2-\sqrt{2}}{2} } }

Answered by Anonymous
0

Answer:

Step-by-step explanation:

Similar questions