Math, asked by Anonymous, 10 months ago

Find the value of sin 75° + cos 75° ?​

Answers

Answered by Anonymous
33

Answer:

\huge\bf\underline\pink{AnSweR:}

 \sin75 +  \cos75 =  \sin75 +  \cos(90 - 15)

 =  \sin75 +  \sin15

 = 2 \sin( \frac{75 + 15}{2} ) \cos( \frac{75 - 15}{2} )

 = 2  \sin45 \cos30

 = 2 \times  \frac{1}{ \sqrt{2} }  \times  \frac{ \sqrt{3} }{2}

 =  \sqrt{ \frac{3}{2} }

Answered by Anonymous
3

Step-by-step explanation:

 \sin(75)  +  \cos(75)  =  \sin(75)  +  \cos(90 - 15)

 =  \sin(75)  +  \sin(15)

 = 2 \sin( \frac{75 + 15}{2} )  \cos( \frac{75 - 15}{2} )

 = 2 \sin(45)  \cos(30)

2 \times \frac{1}{ \sqrt{2} }  \times  \frac{ \sqrt{3} }{2}

 \sqrt{ \frac{3}{2} }

Similar questions