Math, asked by ravivinodha9gmailcom, 1 month ago

Find the value of sin 90 cos 60

Answers

Answered by shaI4457t
0

Answer:

answer is 30 this is answer

Answered by BrainlyTwinklingstar
1

Correct Question

Find the value of sin 90° cos 60°.

Given :

sin 90° cos 60°.

To find :

We need to find the value of sin 90° cos 60°.

Solution :

We know that,

sin 90° = 1

cos 60° = √3/2.

» Now, let's solve our problem and understand the steps to get our final answer.

➙ sin 90° × cos 60°

➙ 1 × √3/2

➙ √3/2

Thus, the the value of sin 90° cos 60° is √3/2.

Some Important trigonometric identities :

  • cos²θ + sin²θ = 1
  • cos²θ = 1 - sin²θ
  • sin²θ = 1 - cos²θ
  • 1 + tan²θ = sec²θ
  • sec²θ - tan²θ = 1
  • tan²θ = sec²θ - 1
  • 1 + cot²θ = cosec²θ
  • cosec²θ - cot²θ = 1
  • cot²θ = cosec²θ - 1

\Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 60^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0 \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $ \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ & 1 & $ \dfrac{1}{ \sqrt{3} } $ &0 \\ \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\ \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1 \\ \cline{1 - 6}\end{tabular}}

Similar questions