Find the value of sin(A/2) and cos(A/2). If sinA = -323/325 and A lies in 3rd quadrant ( Ps : pls dont take sin inverse and find the value. I want the steps. TY)
Answers
Answered by
5
♠Answer♠
if SinA = -323\325
Then , CosA = -36\325
♠ we know , Cos2(Q) = 2Cos²Q - 1
So , Cos A = 2Cos²(A\2)-1
-36\325 +1 = 2Cos²(A\2)
Cos(A\2) = 17/√650
And ,
Cos A is also equal to
1-2Sin²(A\2 ) =-36\325
Sin(A\2) = 19\√650
Here are Your Answers !!
#SupermanINFINITY
♠Formulae Used :
SinA = √(1-Cos²A)
Cos2A = 2Cos²A-1 = 1-2Sin²A
if SinA = -323\325
Then , CosA = -36\325
♠ we know , Cos2(Q) = 2Cos²Q - 1
So , Cos A = 2Cos²(A\2)-1
-36\325 +1 = 2Cos²(A\2)
Cos(A\2) = 17/√650
And ,
Cos A is also equal to
1-2Sin²(A\2 ) =-36\325
Sin(A\2) = 19\√650
Here are Your Answers !!
#SupermanINFINITY
♠Formulae Used :
SinA = √(1-Cos²A)
Cos2A = 2Cos²A-1 = 1-2Sin²A
SupermanINFINITY:
The City Is under Attack !!
Answered by
3
hi friend,
given,sinA = -323/325
→by applying Pythagoras Theorem
we get cosA=-36/325
we know that
cosA=2cos²(A/2)-1
-36/325+1=2cos²(A/2)
289/325=2cos²A/2
289/650=cos²A/2
17/√650=cosA/2
we also know that
cosA=1-2sin²A/2
1+36/325=2sin²(A/2)
361/650=sin²(A/2)
sinA/2=19/√650
I hope this will help u :)
given,sinA = -323/325
→by applying Pythagoras Theorem
we get cosA=-36/325
we know that
cosA=2cos²(A/2)-1
-36/325+1=2cos²(A/2)
289/325=2cos²A/2
289/650=cos²A/2
17/√650=cosA/2
we also know that
cosA=1-2sin²A/2
1+36/325=2sin²(A/2)
361/650=sin²(A/2)
sinA/2=19/√650
I hope this will help u :)
Similar questions