Math, asked by jigyasakrishna959, 10 months ago

Find the value of sin(alpha-beta), cos(alpha-beta) and tan(alpha-beta), given cos alpha=-12/13, cot beta=24/7, alpha lies in quadrant one and beta in quadrant two.​

Answers

Answered by amitnrw
2

Given : cos alpha=-12/13, cot beta=24/7 alpha lies in quadrant two and beta in quadrant three  ( correction)  

To Find :  Sin(α - β) , Cos(α - β) ,  tan(α - β)

Solution:

alpha lies in quadrant two

cosα= -12/13

=> Sinα = + Ve as in 2nd Quadrant Sin is + Ve  

Sin²α = 1 - Cos²α

=> Sinα = 5/13

=> tanα =Sinα  /cosα =   - 5/12

 beta in quadrant three   Sin - ve ,  Cos  -ve  

cotβ=24/7    =>  tanβ = 7/24  

Sinβ = -7/25

cosβ = - 24/25

Sin(α - β)  = SinαCosβ - CosαSinβ

= (5/13)(-24/25)  - (-12/13)(-7/25)

= -120/325  - 84/325

= -204/325

Cos(α - β)  = CosαCosβ + SinαSinβ

= (-12/13)(-24/25)  + (5/13)(-7/25)

= 288/325  - 35/325

= 253/325

tan(α - β) = Sin(α - β) / Cos(α - β) = - 204/253

Learn More:

Prove that sinα + sinβ + sinγ − sin(α + β+ γ)

https://brainly.in/question/10480120

Prove that cos alpha+cos beta + cos gamma + cos (alpha+ beta + ...

https://brainly.in/question/2456359

Similar questions