Math, asked by pappuraj8435, 1 month ago

Find the value of (sinθ+cosθ) ²+ (cosθ-sinθ) ².​

Answers

Answered by bharathivishnu2006
2

Step-by-step explanation:

sin²+cos²+2sin.cos+sin²+cos²-2sin cos

=2sin²+2cos²

=2(sin²+cos²)

=2(1)

=2

Hope it's helpful

please mark me as brainliest

Answered by Anonymous
15

Answer :-

2

Given to find the value of :-

(sinθ+cosθ) ²+ (cosθ-sinθ) ²

SOLUTION:-

Expanding the equation by the algebraic identity (a+b)² and (a-b)²

  • (a+b)² = a² + 2ab + b²
  • (a-b)² = a² -2ab + b²

= (sinθ)² + (cosθ)² + 2(sinθ)(cosθ) + (cosθ)² + (sinθ)² -2 (sinθ)(cosθ)

= sin²θ+cos²θ + 2sinθcosθ + cos²θ + sin²θ - 2sinθ cosθ

Keeping like terms together

= sin²θ + cos²θ + cos²θ + sin²θ + 2sinθ cosθ - 2sinθ cosθ

= 2 sin²θ + 2 cos²θ

Take common "2 "

= 2 [ sin²θ + cos²θ]

From Trigonometric identities sin²θ + cos²θ = 1

= 2(1)

= 2

So, the value of (sinθ+cosθ) ²+ (cosθ-sinθ) ² is 2

Used Algebraic identities:-

(a+b)² = a² + 2ab + b²

(a-b)² = a² -2ab + b²

Used Trigonmetric Identity :-

sin²θ + cos²θ = 1

Know more Trigonmetric identities , relations , ratios:-

Trigonometric Identities:-

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

csc²θ - cot²θ = 1

Trigonometric relations:-

sinθ = 1/cscθ

cosθ = 1 /secθ

tanθ = 1/cotθ

tanθ = sinθ/cosθ

cotθ = cosθ/sinθ

Trigonometric ratios:-

sinθ = opp/hyp

cosθ = adj/hyp

tanθ = opp/adj

cotθ = adj/opp

cscθ = hyp/opp

secθ = hyp/adj

Know more Algebraic identities:-

( a + b )² + ( a - b)² = 2a² + 2b²

( a + b )² - ( a - b)² = 4ab

(a+b)(a-b) = a² -b²

( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca

a² + b² = ( a + b)² - 2ab

(a + b )³ = a³ + b³ + 3ab ( a + b)

( a - b)³ = a³ - b³ - 3ab ( a - b)

If a + b + c = 0 then a³ + b³ + c³ = 3abc

Similar questions