Math, asked by plzhelp98, 5 months ago

find the value of sin if 6cos^2=4 1÷2​

Answers

Answered by sabbiralam45567
6

Answer:

The value is \sin\theta=\pm \frac{1}{2}sinθ=±

2

1

.

Step-by-step explanation:

Given : Expression 6\cos^2\theta=4\frac{1}{2}6cos

2

θ=4

2

1

To find : The value of \sin \thetasinθ ?

Solution :

Re-write the expression as,

6\cos^2\theta=\frac{9}{2}6cos

2

θ=

2

9

\cos^2\theta=\frac{9}{2\times 6}cos

2

θ=

2×6

9

\cos^2\theta=\frac{3}{4}cos

2

θ=

4

3

Using trigonometric formula,

\sin^2\theta=1-\cos^2 \thetasin

2

θ=1−cos

2

θ

\sin^2\theta=1-\frac{3}{4}sin

2

θ=1−

4

3

\sin^2\theta=\frac{4-3}{4}sin

2

θ=

4

4−3

\sin^2\theta=\frac{1}{4}sin

2

θ=

4

1

Taking root both side,

\sin\theta=\sqrt{\frac{1}{4}}sinθ=

4

1

\sin\theta=\pm \frac{1}{2}sinθ=±

2

1

Therefore, the value is \sin\theta=\pm \frac{1}{2}sinθ=±

2

1

.

#Learn more

Sin^theta - 1 / 2 sin theta = 0 . Find the value of theta

https://brainly.in/question/760266

Answered by KishanKumar0001
2

Answer:

sin theta = 1/2

Step-by-step explanation:

Refer Image

Thanks

Please Rate My Answer As Brainliest

Attachments:
Similar questions