Math, asked by pgk090622, 1 month ago

find the value of sin θ if cos θ = 3/5​

Answers

Answered by Sirat4
1

Answer:

Sin θ = 4/5

Step-by-step explanation:

cos θ = 3/5​ = B/H

By Pythagoras theorem:

H² = B² + P²

5² = 3² + P²

25 = 9 + P²

P² = 25 - 9

P² = 16

P = √16

P = 4

Sin θ = P/H

          = 4/5

Answered by vijaykumar9984078984
1

Answer:

 \cos \alpha  =  \frac{3}{5}  =   \frac{base}{hypotenuse}   \\  {hypotenuse}^{2}  =  {base}^{2}  +  {perpendicular}^{2}  \\ perpendicular =  \sqrt{ {hypotenuse}^{2} -  {base}^{2}  }   \\  =  \sqrt{ {5}^{2}  -  {3}^{2} }  \\  =  \sqrt{25 - 9}  \\  =  \sqrt{16 }  \\  = 4 \\  \sin \alpha  =  \frac{perpendicular}{hypotenuse}  \\  =  \frac{4}{5}

Similar questions