Math, asked by kushhimanshu4577, 11 months ago

Find the value of sin inverse minus root 3 by 2 + cos inverse minus 1 by 2

Answers

Answered by Anonymous
5

Answer:

\large\boxed{\sf{\dfrac{\pi}{3}}}

Step-by-step explanation:

Given a trignometric expression such that,

 { \sin }^{ - 1} ( -  \dfrac{ \sqrt{3} }{2} ) +  { \cos }^{ - 1} (  - \dfrac{1}{2} )

To find it's value, we know that,

  •  { \sin }^{ - 1} ( -  \alpha ) =  -  { \sin }^{ -1 }  \alpha
  •  { \cos }^{ - 1} ( -  \alpha ) = \pi -  { \cos }^{ - 1} \alpha

Therefore, we will get,

 =  -  { \sin }^{ - 1}  (\frac{ \sqrt{3} }{2} ) + \pi -  { \cos }^{ - 1}  (\frac{1}{2} )

But, we know that,

  •  { \sin }^{ - 1} (  \frac{ \sqrt{3} }{2} ) =  \frac{\pi}{3}
  •  { \cos}^{ - 1} ( \frac{1}{2} ) =  \frac{\pi}{3}

Therefore, we will get,

  = -  \dfrac{\pi}{3}  + \pi -  \dfrac{\pi}{3}  \\  \\  = \pi -  \frac{2\pi}{ 3}  \\  \\  =  \frac{3\pi - 2\pi}{3}  \\  \\  =  \frac{\pi}{ 3}

Hence, the required value is π/3.

Similar questions