Math, asked by prakhar2797, 1 year ago

find the value of sin square 30 degree + cos square 60 degree

Answers

Answered by help46
53
Sin sq 30= 1/2 x 1/2 = 1/4
Cos sq 60= 1/2 x 1/2= 1/4

1/4 + 1/4 = 2/4= 1/2
Answered by payalchatterje
6

Answer:

Value of the given expression is 1.

Step-by-step explanation:

Given,

sin square 30 degree + cos square 60

{sin}^{2} ( {30}^{o} ) +  {cos}^{2}(  {60}^{o} )

We know,

sin( {90}^{o}  - x)  =  \cos(x)  \\ and \cos( {90}^{o}  - x)  =  \sin(x)

From given expression,

{sin}^{2} ( {90}^{o}  -  {60}^{o} ) +  {cos}^{2}  {60}^{o}  =  {cos}^{2}  {60}^{o} +  {cos}^{2}  {60}^{o} = 2 \times  {cos}^{2}  {60}^{o} = 2 \times ( \frac{1}{2} ) = 1

So value of the given expression is 1.

List of degree values of sin and cos,

Sin0°=0 \\ sin30°= \frac{1}{2}    \\ sin45= \frac{1}{ \sqrt{2} }  \\  \sin( {60}^{o} )  =  \frac{ \sqrt{3} }{2}  \\  \sin( {90}^{o} )  = 0

and

cos0°=0 \\ cos30°= \frac{1}{2}    \\ cos45= \frac{1}{ \sqrt{2} }  \\  \cos( {60}^{o} )  =  \frac{ \sqrt{3} }{2}  \\  \cos( {90}^{o} )  = 0

Similar questions