Math, asked by sannidhya2008, 7 months ago

Find the value of sin (tan-1 99 +cot-1 99) ​

Answers

Answered by rajeevr06
7

Answer:

we know that

tan {}^{ - 1} x  \:  +  \:  {cot}^{ - 1} x \:  =  \frac{\pi}{2}

then

 \sin(tan {}^{ - 1} 99  \:  +  \:  {cot}^{ - 1} 99 \:  )  =  \sin( \frac{\pi}{2} )  = 1

Answered by talasilavijaya
0

Answer:

The value of sin (tan^{-1} 99 +cot^{-1} 99)=1

Step-by-step explanation:

Given the trigonometric relation, sin (tan^{-1} 99 +cot^{-1} 99)

Let us consider,

tan^{-1} x =y                                               ....(1)

\implies  x =tan y

Using the trigonometric relation, tanθ = cot(90 - θ)

\implies  x =cot(90-y)

\implies  cot^{-1}x =90-y

Substituting (1) for y,

\implies  cot^{-1}x =90-tan^{-1} x

\implies  cot^{-1}x +tan^{-1} x =90

Using this in the given relation, tan^{-1} 99 +cot^{-1} 99= 90

And hence,

sin (tan^{-1} 99 +cot^{-1} 99)=sin 90

The value of sin 90 = 1,

Therefore, the value of sin (tan^{-1} 99 +cot^{-1} 99)=1

Similar questions