Find the value of sin theta + cos theta by sin theta minus cos theta + sin theta minus cos theta by sin theta + cos theta
Answers
Answered by
3
Solution
→ (sin∅ + cos∅)/(sin∅ - cos∅) + (sin∅ - cos∅)/(sin∅ + cos∅)
→ [(sin∅ + cos∅)² + (sin∅ - cos∅)²]/(sin∅ - cos∅)(sin∅ + cos∅)
→ [sin²∅ + cos²∅ + 2sin∅·cos∅ + sin²∅ + cos²∅ - 2sin∅·cos∅]/(sin²∅ - cos²∅)
→ 2(sin²∅ + cos²∅)/(sin²∅ - 1 + sin²∅)
→ 2/(2sin²∅ - 1)
Remember
- cos²∅ = 1 - sin²∅
- sin²∅ + cos²∅ = 1
Similar questions