find the value of sin theta + cos theta whole square + cos theta minus sin theta whole square
Answers
Answered by
14
Answer: 2
Step-by-step explanation:
Let the angle be x. Then,
Sin²x + cos²x +2sinx.cosx + cos²x + sin²x - 2sinx.cosx.
= 2(sin²x + cos²x) = 2× 1 = 2
Answered by
4
Answer:
Step-by-step explanation: (Sin theta + cos theta )^2 + (cos theta - sin theta )^2
Sin ^2 theta + cos^2 + 2sintheta.costheta+cos^2theta+sin^2ttheta-2costheta.sintheta
{ Sin^2 theta + cos ^2 theta =1}
1+1=2
Similar questions