Math, asked by sumaiyya15, 1 year ago

find the value of sin theta/ root 1- sin square theta

Answers

Answered by Anonymous
48
Heya !!!!!

Here you go >>>>>
Attachments:
Answered by harendrachoubay
22

\dfrac{\sin \theta}{\sqrt{1-\sin^2 \theta}}=\tan \theta

Step-by-step explanation:

We have,

\dfrac{\sin \theta}{\sqrt{1-\sin^2 \theta}}

To find, \dfrac{\sin \theta}{\sqrt{1-\sin^2 \theta}}=?

\dfrac{\sin \theta}{\sqrt{1-\sin^2 \theta}}

=\dfrac{\sin \theta}{\sqrt{\cos^2 \theta}}

Using trigonometric identity,

\sin^2 \theta+\cos^2 \theta=1

=\dfrac{\sin \theta}{\cos \theta}

=\tan \theta

Using trigonometric identity,

\tan \theta=\dfrac{\sin \theta}{\cos \theta}

Hence, \dfrac{\sin \theta}{\sqrt{1-\sin^2 \theta}}=\tan \theta

Similar questions