Math, asked by varungaur5677, 8 months ago

Find the value of sin18 degree and sin 54 degree

Answers

Answered by devipen1707
1

Answer:

Step-by-step explanation:

sin54^{0} =sin(90^{0} -36^{0})=cos36^{0}=\frac{\sqrt{5}+1 }{4}

sin18^{0}=

let Θ(teta)=18^{0}

5teta= 90^{0}

2teta+3teta=90^{0}

2teta=90^{0}-3teta

sin2teta=sin(90^{0}-3teta)=cos3teta

2sinteta.costeta=4cos^{3}teta-3costeta

costeta(2sinteta-4cos^{2}teta+3)=0

2sinteta-4(1-sin^{2}teta)+3=0

2sinteta+4sin^{2}teta-1=0

let sinteta=x then

4x^{2}+2x-1=0

x=\frac{-b+or-\sqrt{b^{2}-4ac } }{2a}   (substitute b=2,a=4,c=-1 in these formula)

x=\frac{-1+or-\sqrt{5} }{4}

sinteta=\frac{-1+or-\sqrt{5} }{4}

Similar questions