FIND THE VALUE OF SIN18 DEGREE, SIN36 DEGREE, SIN72 DEGREE, TAN 22 1/2 (22 AND HALF)
Answers
Answered by
2
Let x= 18 degrees
5x = 90 degrees
3x = 90 - 2x taking sin both side
sin (3x) = sin {(90 - 2x)}
sin 3x = cos 2x
3 sin x - 4 sin^3(x) = 1- 2 sin^2(x)
put sin x = t
4t^3 - 2t^2 - 3t +1 = 0
4 t^3 - 4 t^2 + 2 t^2 -2t -t+1=0
4 t^2(t-1) +2t (t - 1) -1(t-1) =0
(t-1){4t^2 + 2t -1}= 0
either t = 1.........................(i)
or {4t^2 + 2t -1}= 0
t =[ -2 +/- sqrt{4 + 16}]/8
t = { -2 +/- sqrt {20}]/8
t = {-1 + sqrt 5}/4.............(ii) by taking +ve sign
t = {-1 - sqrt 5}/4.............(iii) by taking - ve sign
from (i),(ii) and (iii)
t = sin 18 = 1, {-1 + sqrt 5}/4 and {-1 - sqrt 5}/4
since sin 18 cannot be equal to 1 and {-1 - sqrt 5}/4 being in first quadrant
Therefore sin 18 = {-1 + sqrt 5}/4
I hope this helps u
5x = 90 degrees
3x = 90 - 2x taking sin both side
sin (3x) = sin {(90 - 2x)}
sin 3x = cos 2x
3 sin x - 4 sin^3(x) = 1- 2 sin^2(x)
put sin x = t
4t^3 - 2t^2 - 3t +1 = 0
4 t^3 - 4 t^2 + 2 t^2 -2t -t+1=0
4 t^2(t-1) +2t (t - 1) -1(t-1) =0
(t-1){4t^2 + 2t -1}= 0
either t = 1.........................(i)
or {4t^2 + 2t -1}= 0
t =[ -2 +/- sqrt{4 + 16}]/8
t = { -2 +/- sqrt {20}]/8
t = {-1 + sqrt 5}/4.............(ii) by taking +ve sign
t = {-1 - sqrt 5}/4.............(iii) by taking - ve sign
from (i),(ii) and (iii)
t = sin 18 = 1, {-1 + sqrt 5}/4 and {-1 - sqrt 5}/4
since sin 18 cannot be equal to 1 and {-1 - sqrt 5}/4 being in first quadrant
Therefore sin 18 = {-1 + sqrt 5}/4
I hope this helps u
Similar questions