Math, asked by BrainlyNewton1, 1 year ago

Find the value of (sin² 33° + sin² 57°)

Answers

Answered by VishalSharma01
69

Answer:

Step-by-step explanation:

Given :-

sin² 33° + sin² 57°

To Find :-

The Value

Formula or Identity to be used :-

Sin²θ + cos²θ = 1

Solution :-

= sin² 33° + sin² 57°

= sin² 33° + cos² (90° - 57°)

= 1        [Sin²θ + cos²θ = 1]

Hence, The Required value is 1.

Answered by Anonymous
7

 \large\underline{ \underline{ \sf \:  Answer : \:  \:  \: }}

 \to \sf 1

   \large\underline{ \underline{ \sf \: Explaination : \:  \:  \: }}

 \to \sf {sin}^{2}   \: 33° +  {sin}^{2}  \:  57° \\  \\  \to \sf</p><p> {(sin \: 33°) }^{2}  +  {  (sin \:  \{90 °- 33° \}  )}^{2}  \\  \\  \to \sf  {(sin \: 33°) }^{2} +  {(cos \: 33°)}^{2}  \\  \\ \to  \sf 1

\large\underline{ \underline{ \sf \: Formula    \: used   : \:  \:  \: }}

  \star \:  \:   \sf sin \: (90 -  \theta) = cos  \: \theta \\  \\  \star \:  \:  \sf  {sin}^{2} \: x +  {cos}^{2} \: x = 1

Similar questions