Math, asked by nf0140930gmailcom, 2 months ago

find the value of sin260+2tan 45 - cos230​

Answers

Answered by deepansgik23
1

Answer:

sin

2

60

+2tan45

−cos

2

30

=2

Step-by-step explanation:

Given : Expression \sin^2 60^\circ+2\tan 45^\circ-\cos^2 30^\circsin

2

60

+2tan45

−cos

2

30

To find : Evaluate the expression ?

Solution :

\sin^2 60^\circ+2\tan 45^\circ-\cos^2 30^\circsin

2

60

+2tan45

−cos

2

30

Using trigonometric values,

\sin 60^\circ=\frac{\sqrt3}{2}sin60

=

2

3

\tan 45^\circ =1tan45

=1

\cos 30^\circ=\frac{\sqrt3}{2}cos30

=

2

3

Substitute the values,

=(\frac{\sqrt3}{2})^2+2(1)-(\frac{\sqrt3}{2})^2=(

2

3

)

2

+2(1)−(

2

3

)

2

=\frac{3}{4}+2-\frac{3}{4}=

4

3

+2−

4

3

=2=2

Therefore, \sin^2 60^\circ+2\tan 45^\circ-\cos^2 30^\circ=2sin

2

60

+2tan45

−cos

2

30

=2 .

#Learn more

EVALUATE : SIN THETA + COS THETA + SIN THETA COS (90°- THETA) COS THETA / SEC(90°-theta) + cos theta sin (90-theta)sin theta /cosec(90°-theta) - 2 sin(90°-theta) cos (90°-theta)

Similar questions