find the value of sin2pi/7+sin4pi/7+sin8pi/7.
Answers
Answered by
17
Lets take a = 2pi/7
7a =2pi
sin4a = sin(2pi-3a)
sin4a = -sin3a
2sin2a.cos2a = 4sin3(a) -3sina
4sin a.cos a (1-2sin2(a)) = sin a(4sin2(a) - 3)
4cos a(1-2sin2(a)) = 4sin2(a) -3
On squaring both sides
16(1-sin2(a)) [1-2sin2(a))]^2 = (4sin2(a) -3)2
64sin6(a) - 112sin4(a) + 56sin2(a) -7 =0
it is cubic in sin2(a)
its roots are sin2(2pi/7) ,sin4(pi/7) ,sin2(8pi/7)
sum of roots =7/4
sin2pi/7*sin4pi/7 +sin4pi/7*sin8pi/7 +sin8pi/7*sin2pi/7 = 0
we can simply prove it by using 2sin a.sin b= cos(a-b) - cos(a+b)
& cos(2pi-theta) = cos theta
(sin2pi/7+sin4pi/7 +sin8pi/7)2=7/4
sin2pi/7+sin4pi/7 +sin8pi/7=[(7)1/2]/2
7a =2pi
sin4a = sin(2pi-3a)
sin4a = -sin3a
2sin2a.cos2a = 4sin3(a) -3sina
4sin a.cos a (1-2sin2(a)) = sin a(4sin2(a) - 3)
4cos a(1-2sin2(a)) = 4sin2(a) -3
On squaring both sides
16(1-sin2(a)) [1-2sin2(a))]^2 = (4sin2(a) -3)2
64sin6(a) - 112sin4(a) + 56sin2(a) -7 =0
it is cubic in sin2(a)
its roots are sin2(2pi/7) ,sin4(pi/7) ,sin2(8pi/7)
sum of roots =7/4
sin2pi/7*sin4pi/7 +sin4pi/7*sin8pi/7 +sin8pi/7*sin2pi/7 = 0
we can simply prove it by using 2sin a.sin b= cos(a-b) - cos(a+b)
& cos(2pi-theta) = cos theta
(sin2pi/7+sin4pi/7 +sin8pi/7)2=7/4
sin2pi/7+sin4pi/7 +sin8pi/7=[(7)1/2]/2
Similar questions