Math, asked by AradhanaDash, 1 year ago

find the value of sin3°

Answers

Answered by amitnrw
1

Given :  sin3°

To Find : Value of   sin3°

Solution  :

f(x)  = sin(x)

f(x + Δx)  = sin(x + Δx)

x = 0

Δx = 3°  = 3 * π/180  = 0.0523

f'(x)  = cos(x)

f(x + Δx)   = f(x)  + Δx f'(x)

=> sin ( 0 + 3°) = sin (0°)  + ( 0.0523 ) cos(0°)

=> Sin (3°) = 0  +  ( 0.0523 ) (1)

=>  Sin (3°) = 0.0523

value of sin3° = 0.0523

Learn More:

f(2.01) का सन्निकट मान ज्ञात कीजिए जबकि f ...

https://brainly.in/question/16307785

f(5.001) का सन्निकट मान ज्ञात कीजिए ...

https://brainly.in/question/16308025

Answered by madeducators11
2

To Find : the value of sin3°

Step-by-step explanation:

sin 15° = \frac{\sqrt{6} - \sqrt{2} }{4}

sin 18° = \frac{1}{4} (\sqrt{5} - 1)

sin 72° = \frac{\sqrt{2} }{4} \sqrt{5+\sqrt{5} }

sin 75° = \frac{\sqrt{6}+ \sqrt{2}  }{4}

By using,

    sin (a - b) = sin a . cos b - cos a . sin b

sin (18° - 15°) = sin 18°. cos 15° - cos 18°. sin 15°

    sin 3°   = sin 18°. sin 75° - sin 72°. sin 15°

    sin 3°    = \frac{1}{4} (\sqrt{5} - 1) . \frac{\sqrt{6}+ \sqrt{2}  }{4}  - \frac{\sqrt{2} }{4} \sqrt{5+\sqrt{5} } .  \frac{\sqrt{6} - \sqrt{2} }{4}

    sin 3°    = \frac{1}{16} [ (\sqrt{5} - 1) (\sqrt{6} + \sqrt{2}) - 2(2\sqrt{3} -2) (\sqrt{5+\sqrt{5} }) ]

    sin 3°    =  \frac{1}{16} [ (\sqrt{5} - 1) (\sqrt{6} + \sqrt{2}) - \frac{1}{8} (\sqrt{3} - 1) (\sqrt{5+\sqrt{5} }) ]

                 

Similar questions