Math, asked by llAgniSiragull, 4 days ago

find the value of sin30° + cos30°​

Answers

Answered by ks2198588
2

Step-by-step explanation:

sin 30°+cos30°

1/2+√3/2

= 1.3660

hey mate here is your answer

hope it's help you

please mark me as brainliest

Answered by Rudranil420
8

Answer:

Question :-

  • Find the value of sin30° + cos30°.

Solution :-

➙ sin30° + cos30°

As we know that :

  • sin30° = ½
  • cos30° = 3/2

By putting those values we get,

\implies \sf \dfrac{1}{2} + \dfrac{\sqrt{3}}{2}

\implies \sf \dfrac{2 + 2\sqrt{3}}{2}

\implies \sf \dfrac{4\sqrt{3}}{2}

\purple{\rule{45pt}{7pt}}\red{\rule{45pt}{7pt}}\pink{\rule{45pt}{7pt}}\blue{\rule{45pt}{7pt}}

\red{ \boxed{\sf{Trigonometric\: Ratios\: Table :-}}}

\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3} }{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }& 1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm  \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty\:  \\ \\ \rm cot A & \rm  \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array}}}\end{gathered}\end{gathered} \end{gathered}

\bigstar\:  { \red{ \bf{   Information \: related \: to \:Trigonometry:}}}

 { \green{ \bf{ sin θ = Perpendicular/Hypotenuse  }}}

 { \green{ \bf{  cos θ = Base/Hypotenuse }}}

 { \green{ \bf{tan θ = Perpendicular/Base  }}}

 { \green{ \bf{sec θ = Hypotenuse/Base   }}}

 { \green{ \bf{  cosec θ = Hypotenuse/Perpendicular }}}

 { \green{ \bf{  cot θ = Base/Perpendicular }}}

\bigstar { \red{ \bf{Their \: reciprocal \: Identities:   }}}

 { \green{ \bf{  cosec θ = \dfrac{1}{sin θ} }}}

 { \green{ \bf{ sec θ = \dfrac{1}{cos θ}  }}}

 { \green{ \bf{  cot θ = \dfrac{1}{tan θ} }}}

 { \green{ \bf{sin θ = \dfrac{1}{cosec θ}   }}}

 { \green{ \bf{ cos θ = \dfrac{1}{sec θ}  }}}

 { \green{ \bf{   tan θ = \dfrac{1}{cot θ}}}}

\bigstar { \red{ \bf{ Their \: fundamental \: trigonometric \: identities:  }}}

 { \green{ \bf{  sin^2θ + cos^2θ = 1 }}}

 { \green{ \bf{  sec^2θ - tan^2θ = 1 }}}

 { \green{ \bf{ cosec^2θ - cot^2θ = 1  }}}

Similar questions