Math, asked by aayushdemon214, 11 months ago

Find the value of sin54÷sin18-cos54÷cos18

Answers

Answered by kartikgupta82
0

please explain this in details

Answered by ashwanth064
1

Answer:

Step-by-step explanation:

Let x = 18 degrees

sin (54) = sin (3x)

cos (54)= cos (3x)

[By using the formula : sin 3x = 3 sin x - 4 sin³ x ]

sin54 ÷ sin18 = sin 3x ÷ sin x  

           =  (3 sin x - 4 sin³ x) / sin x

           =  3 - 4 sin² x                              __________  Equation 1

Similarly for other part of the equation :

[By using the formula : cos 3x = 4 cos³ x - 3 cos x ]

cos54 ÷ cos18 = cos 3x ÷ cos x  

           =  (4 cos³ x - 3 cos x) / cos x

           =  4 cos² x - 3                             __________  Equation 2

Subtracting equation 2 from 1 :

                          sin54÷sin18-cos54÷cos18

                           =  ( 3 - 4 sin² x )  - (4 cos² x - 3 )

                           =    3 - 4 sin² x  -  4 cos² x + 3

                          =    6 - 4 (sin² x + cos² x)

                          =    6 - 4 = 2

{ Note : For whatever value of the angle , the answer to this type of question is 2 , since we have not substituted any trigonometric value of 18 degree in any equation }

Similar questions