Find the value of Sin90. Cos0 + sin88. Cos2 + sin 86. Cos 4+....+ sin2. cos88 + sin0. Cos 90
Answers
20+sin50.cos5
20+sin50.sin50 (or)
20+cos50.cos50
Answer:
23
Step-by-step explanation:
let A = sin90cos0+sin88cos2+sin86cos4+.......+sin4cos86+sin2cos88+sin0cos90
suppose B=0,2,4,6,......,90
therefore 90=a+(n-1)d=0+(n-1)2
solving for n=46.....
middle terms are 23rd and 24th terms=44 and 46
therefore comparing B to A
middle terms of A are sin46cos44 and cos46sin44
therefore A=sin90cos0+sin88cos2+sin86cos4+.......+sin46cos44+sin44cos46+.......+sin4cos86+sin2cos88+sin0cos90
rearranging A = C =(sin90cos0+sin0cos90)+(sin88cos2+sin2cos88)+(sin86cos4+sin4cos86)+.....+(sin46cos44+sin44cos46)
C = sin(90+0) + sin(88+2) + sin(86+4) +.....+ sin(46+44)
=sin90+sin90+sin90+.......+sin90
=1+1+1+.......+1
pls keep in mind that A has 46 terms so combing terms once gives 23 terms so in C 1 is repeated 23 times
therefore A=C=23