Find the value of (sinA + cosecA)2 + (cosA + secA)2 - (tan2A + cotA)
Answers
Answered by
5
Answered by
0
Answer:
lsinA+cosecA)
2
+(cosA+secA)
2
−(tan2A+cotA)
2
= sin {}^{2} a + cosec {}^{2} a + 2sina \times cosa + cos {}^{2} a + sec {}^{2} a + 2cos \times sec - (tan {}^{2} a + cot {}^{2} a + 2tan \: a \times cosa)=sin
2
a+cosec
2
a+2sina×cosa+cos
2
a+sec
2
a+2cos×sec−(tan
2
a+cot
2
a+2tana×cosa)
= sin {}^{2} a + cosec {}^{2} a + 2+ cos {}^{2} a + sec {}^{2} a + 2 - tan {}^{2} a - cot {}^{2} a - 2=sin
2
a+cosec
2
a+2+cos
2
a+sec
2
a+2−tan
2
a−cot
2
a−2
= (sin {}^{2} + cos {}^{2} ) + (tan {}^{2} a - cos {}^{2} a) + (cot {}^{2} a - cosec {}^{2} a) + 2 + 2 - 2=(sin
2
+cos
2
)+(tan
2
a−cos
2
a)+(cot
2
a−cosec
2
a)+2+2−2
= 1 + 1 + 1 + 2=
Similar questions