Math, asked by adityarammutyala, 6 months ago

Find the value of sinA when
COSA=3/5

please answer this question
I will make as brainliest when you tell the correct answer
and I wil give 5 coins​

Answers

Answered by vy224539gmailcom
0

Answer:

sinA=4/5 because when we find perpendicular 4

Answered by Anonymous
1

First of all, see the attachment..

 \sf </p><p>CosA=\frac{Adjacent}{Hypotenuse} \\\sf </p><p>CosA=\frac{PQ}{PR} \\\sf </p><p>CosA=\frac{3}{5}  \\\sf </p><p>Now, by Pythagoras\: theorem, \\\sf </p><p>PQ^2+QR^2=PR^2\\\sf </p><p>3^2+QR^2=5^2\\\sf </p><p>9+QR^2=25\\\sf </p><p>QR^2=25-9\\\sf </p><p>QR=\sqrt{16}\\\sf </p><p>QR=4\\\\\sf </p><p></p><p>Now, SinA=\frac{Opposite}{Hypotenuse} \\\sf </p><p>=\frac{QR} {PR} \\\sf </p><p>=\frac{4} {5}\\\\\sf </p><p></p><p>Hence, \:SinA =\frac{4} {5}</p><p>

Attachments:
Similar questions