Find the value of sqrt 1-cos^ 2 theta 1-sin^ 2 theta if theta=30.
Answers
Answered by
0
Answer:
First we take left side and put \theta=30^{\circ}θ=30
∘
\Rightarrow \cos2(30^{\circ})⇒cos2(30
∘
)
\Rightarrow \cos60^{\circ}⇒cos60
∘
\Rightarrow \dfrac{1}{2}⇒
2
1
Now we take right side and put \theta=30^{\circ}θ=30
∘
\Rightarrow \dfrac{1-\tan^2\theta}{1+\tan^2\theta}⇒
1+tan
2
θ
1−tan
2
θ
\Rightarrow \dfrac{1-\tan^230^{\circ}}{1+\tan^230^{\circ}}⇒
1+tan
2
30
∘
1−tan
2
30
∘
\Rightarrow \dfrac{1-\frac{1}{3}}{1+\frac{1}{3}}⇒
1+
3
1
1−
3
1
\Rightarrow \dfrac{3-1}{3+1}⇒
3+1
3−1
\Rightarrow \dfrac{1}{2}⇒
2
1
LHS=RHS=\dfrac{1}{2}LHS=RHS=
2
1
Hence verified
Similar questions
Math,
5 hours ago
Sociology,
5 hours ago
Computer Science,
5 hours ago
Chemistry,
10 hours ago
Social Sciences,
8 months ago
Math,
8 months ago
Biology,
8 months ago