Math, asked by ab73meena, 3 months ago

Find the value of t : 4 (t + 1 ) + ( t + 2) = 6 ( t – 3 ) – 1​

Answers

Answered by Anonymous
23

\large\sf\underline{Given\::}

  • \sf\:4(t+1) +(t+2) =6(t-3) -1

\large\sf\underline{To\:find\::}

  • Value of x

\large\sf\underline{Solution\::}

\sf\:4(t+1) +(t+2) =6(t-3) -1

  • Let's multiply the terms and remove the brackets

\sf\implies\:4t + 4 + t + 2 = 6t- 18 -1

  • Let's now arrange the like terms together

\sf\implies\:4t + t + 4 + 2 = 6t- 18 -1

  • Adding the like terms

\sf\implies\:5t + 6 = 6t- 19

  • Transposing 6t to the other side it becomes -6t

\sf\implies\:5t - 6t + 6 = - 19

\sf\implies\:-t + 6 = - 19

  • Transposing 6 to other side it becomes -6

\sf\implies\:-t = - 19-6

\sf\implies\:\cancel{-}t = \cancel{-} 25

\small\fbox\red{⟹\:\:t\:\:=\:\:25}

_____________________________

\large\sf\underline{Verifying\::}

\sf\:4(t+1) +(t+2) =6(t-3) -1

  • Let's substitute the value of t as 25

\sf\to\:4(25+1) +(25+2) =6(25-3) -1

  • Simplifying the terms inside brackets

\sf\to\:4(26) +(27) =6(22) -1

  • Removing brackets

\sf\to\:4 \times 26 +27 =6 \times 22 -1

  • Multiplying the terms

\sf\to\:104+27 =132 -1

  • Adding in [ LHS ] and Subtracting [ RHS ]

\sf\to\:131 =131

{\sf{{\orange{[Hence\:Verified]}}}}

_____________________________

!! Hope it helps !!

Similar questions