Math, asked by KMHarshiith, 30 days ago

Find the value of t_{9} of a sequence, given that t n =t n-1 +2^ n and t_{1} = 1 .

a. 1,021
b. 1,022
c. 2,043
d. 2,044​

Answers

Answered by modishgamer2005
1

Answer:

(2017)×(2015)×(2013)×....×(1)

(2018)×(2016)×(2014)×....×(2)

 

T  

n+2

=T  

n

+  

T  

n+1

 

1

 

⇒T  

n+2

−T  

n

=  

T  

n+1

 

1

 

⇒T  

n+2

⋅T  

n+1

−T  

n+1

⋅T  

n

=1

Now, let a  

n

=T  

n+1

⋅T  

n

 

⇒a  

n+1

−a  

n

=1

So, a  

1

,a  

2

,a  

3

,...,a  

n+1

 form an A.P. with common difference, d=1; and first term a  

1

=T  

2

⋅T  

1

=(1)(1)=1

Now, n  

th

 term of this AP is a  

n

=a  

1

+(n−1)d

a  

n

=1+(n−1)1

a  

n

=n

So, T  

n+1

⋅T  

n

=n

So, (T  

2019

)(T  

2018

)=2018 and (T  

2018

)(T  

2017

)=2017

⇒T  

2019

=  

T  

2018

 

2018

=  

(  

T  

2017

 

2017

)

2018

−(  

2017

2018

)T  

2017

 

Thus, T  

2019

=(  

2017

2018

)T  

2017

 

Similarly, T  

2017

=(  

2015

2016

)T  

2015

 

T  

2015

=(  

2013

2014

)T  

2013

 

T  

3

=(  

1

2

)T  

2

=2

Thus, T  

2019

=(  

2017

2018

)(  

2015

2016

)(  

2013

2014

)(  

1

2

)

So T  

2019

=  

(2017)(2015)(2013).(3)(1)

(2018)(2016)(2014)(2)

 

So option B.

Step-by-step explanation:

Answered by okshinde521
1

Step-by-step explanation:

1022 is the answer of above question

Similar questions