Math, asked by yuoo17, 8 months ago

Find the value of tan^-1(1)+cos^-1(-1/2)+sin^-1(-1/2) Please answer it fast,correct answer will be brainliest

Answers

Answered by Anonymous
3

Answer:

\dfrac{3\pi}{4}

Explanation:

\sf{Let\ tan}^{-2}(1)=x

\sf{Then\ tan\ x=0=1=tan\dfrac{\pi}{4}

\because \sf{tan}^{-2}(1)=\dfrac{\pi}{4}

\sf{Let\ cos^{-1}\bigg\lgroup-\dfrac{1}{2}\bigg\rgroup=y

\sf{Then, cos\ y}=-\dfrac{1}{2}=\sf{-cos}\bigg\lgroup{\dfrac{\pi}{3}\bigg\rgroup}=\sf{cos}{-\pi \dfrac{\pi}{3}=cos\bigg\lgroup\dfrac{2x}{3}\bigg\rgroup

\because\ \sf{cos^{-2}\bigg\lgroup-\dfrac{1}{2}\bigg\rgroup=\dfrac{2\pi}{3}

\sf{Let\ sin^{-1}\bigg\lgroup-\dfrac{1}{2}\bigg\rgroup=z

\sf{Then,sin\ z=-\dfrac{1}{2}=-sin\bigg\lgroup\dfrac{\pi}{6}\bigg\rgroup=-sin\bigg\lgroup-\dfrac{\pi}{6}\bigg\rgroup

\because\ \sf{sin}^{-1}\bigg\lgroup-\dfrac{1}{2}\bigg\rgroup=\dfrac{-\pi}{6}

\because\ \sf{tan}^{-1}(1)+\sf{cos}^{-1}\bigg\lgroup-\dfrac{1}{2}\bigg\rgroup+\sf{sin}^{-1}\bigg\lgroup-\dfrac{1}{2}\bigg\rgroup

\rightarrow \dfrac{\pi}{4}+\dfrac{2\pi}{3}=\dfrac{\pi}{6}

\rightarrow \dfrac{3\pi+8\pi-2\pi}{12}

\rightarrow \dfrac{9\pi}{12}

\rightarrow \dfrac{3\pi}{4}

Answered by Anonymous
1

Solution :

 \sf \mapsto  { \tan}^{ - 1} (1) +  { \cos}^{ - 1} ( -  \frac{1}{2} ) + { \sin}^{ - 1} ( -  \frac{1}{2} ) \\  \\  \sf \mapsto \frac{\pi}{4}  +( \pi -  \frac{\pi}{3} ) + ( -  \frac{\pi}{6} ) \\  \\  \sf \mapsto \frac{\pi}{4}  +  \frac{2\pi}{3}   -  \frac{\pi}{3} \\  \\ \sf Taking \:  LCM  \: , \:  we  \: get  \\  \\   \sf \mapsto \frac{2\pi + 8\pi - 2\pi}{12}  \\  \\  \sf \mapsto  \frac{9\pi}{12}  \\  \\  \sf \mapsto \frac{3\pi}{4}

Remmember :

 \sf \star \:  \:  { \sin}^{ - 1} ( - x) =  -  { \sin}^{ - 1} ( x)  \\  \\\sf \star \:  \: { \cos}^{ - 1} ( - x) =  \pi -   { \cos}^{ - 1} ( x) \\  \\ \sf \star \:  \: { \tan}^{ - 1} ( - x) =  -  { \tan}^{ - 1} ( x) \\  \\ \sf \star \:  \: { \cot}^{ - 1} ( - x) = \pi -  { \cot}^{ - 1} ( x) \\  \\\sf \star \:  \:  { \sec}^{ - 1} ( - x) = \pi -  { \sec}^{ - 1} ( x) \\  \\ \sf \star \:  \: {cosec}^{ - 1} ( - x) =  -  {cosec}^{ - 1} (  x)

Similar questions