Math, asked by ashikloki906, 7 months ago

Find the value of tan 19π/3​

Answers

Answered by anindyaadhikari13
11

Required Answer:-

Given to find:

  • Value of tan(19π/3)

Solution:

Given,

 \rm \tan \bigg( \dfrac{19\pi}{3}  \bigg)

 \rm =  \tan \bigg( \dfrac{18\pi + \pi}{3}  \bigg)

 \rm =  \tan \bigg( \dfrac{18\pi }{3}  +  \dfrac{\pi}{3}  \bigg)

 \rm =  \tan \bigg(6\pi +  \dfrac{\pi}{3}  \bigg)

As we know that,

 \rm \mapsto \tan (x \pm k\pi) =  \tan(x) , x \in \Z

So,

 \rm  \tan \bigg(6\pi +  \dfrac{\pi}{3}  \bigg)

 \rm  =  \tan \bigg( \dfrac{\pi}{3}  \bigg)

Value of tan(π/3) is √3. So,

 \rm =  \sqrt{3}

Hence,

 \rm \mapsto \tan \bigg( \dfrac{19\pi}{3}  \bigg)  =  \sqrt{3}

Answer:

 \rm \mapsto \tan \bigg( \dfrac{19\pi}{3}  \bigg)  =  \sqrt{3}

Similar questions