find the value of tan 27 degree
Answers
Answer:
Solution:
We have, (sin 27° + cos 27°)2 = sin2 27° + cos2 27° + 2 sin 27° cos 27°
⇒ (sin 27° + cos 27°)2 = 1+ sin 2 ∙ 27°
⇒ (sin 27° + cos 27°)2 = 1 + sin 54°
⇒ (sin 27° + cos 27°)2 = 1 + sin (90° - 36°)
⇒ (sin 27° + cos 27°)2 = 1 + cos 36°
⇒ (sin 27° + cos 27°)2 = 1+ √5+14
⇒ (sin 27° + cos 27°)2 = 14 ( 5 + √ 5)
Therefore, sin 27° + cos 27° = 125+5–√−−−−−−√ …………….….(i)
[Since, sin 27° > 0 and cos 27° > 0 Similarly, we have,
(sin 27° - cos 27°)2 = 1 - cos 36°
⇒ (sin 27° - cos 27°)2 = 1 - √5+14
⇒ (sin 27° - cos 27°)2 = 14 (3 - √5 )
Therefore, sin 27° - cos 27° = ± 123−5–√−−−−−−√ …………….….(ii)
Now, sin 27° - cos 27° = √2 (1√2 sin 27˚ - 1√2 cos 27°)
=√2 (cos 45° sin 27° - sin 45° cos 27°)
= √2 sin (27° - 45°)
= -√2 sin 18° < 0
Therefore, from (ii) we get,
sin 27° - cos 27° = -123−5–√−−−−−−√ …………….….(iii)
Now, adding (i) and (iii) we get,
2 sin 27° = 125+5–√−−−−−−√ - 123−5–√−−−−−−√
⇒ sin 27° = 14(5+5–√−−−−−−√−3−5–√−−−−−−√)
Therefore, sin 27° = 14(5+5–√−−−−−−√−3−5–√−−−−−−√)…………….….(iv)
Again, subtracting (iii) and (i) we get,
2 cos 27° = 125+5–√−−−−−−√ + 123−5–√−−−−−−√
⇒ cos 27° = 14(5+5–√−−−−−−√+3−5–√−−−−−−√)
Therefore, cos 27° = 14(5+5–√−−−−−−√+3−5–√−−−−−−√)…………….….(v)
Now dividing (iv) by (v) we get,
tan 27° = 5+5√√−3−5√√5+5√√+3−5√√
Answer:
tan 27° = 0.50952
..