Find the value of tan 2A, if cos 3A = sin 45
Answers
Answered by
120
♧♧HERE IS YOUR ANSWER♧♧
Given :
cos3A = sin45
=> cos3A = sin(90 - 45)
=> cos3A = cos45
So, 3A = 45, by inverting the cosine.
=> A = 15
So, we see that :
A = 15°
Now,
tan2A
= tan(2 × 15)°
= tan30°
= 1/(√3)
= 0.577 (approximately)
Remember :
sin(90 - θ) = cosθ
cos(90 - θ) = sinθ
tan(90 - θ) = cotθ
cot(90 - θ) = tanθ
sec(90 - θ) = cosecθ
cosec(90 - θ) = secθ
♧♧HOPE IT HELPS YOU♧♧
Given :
cos3A = sin45
=> cos3A = sin(90 - 45)
=> cos3A = cos45
So, 3A = 45, by inverting the cosine.
=> A = 15
So, we see that :
A = 15°
Now,
tan2A
= tan(2 × 15)°
= tan30°
= 1/(√3)
= 0.577 (approximately)
Remember :
sin(90 - θ) = cosθ
cos(90 - θ) = sinθ
tan(90 - θ) = cotθ
cot(90 - θ) = tanθ
sec(90 - θ) = cosecθ
cosec(90 - θ) = secθ
♧♧HOPE IT HELPS YOU♧♧
Answered by
71
Hey mate !!!
Cos 3A = sin 45 °
Cos3A = sin (90° -45°)
Cos3A = 45°
cosA = > 15 °
now , tan 2A =>
tan 15*2. => tan 30 °
tan 30° = > 1/√3
hope it helps :
thanks
Cos 3A = sin 45 °
Cos3A = sin (90° -45°)
Cos3A = 45°
cosA = > 15 °
now , tan 2A =>
tan 15*2. => tan 30 °
tan 30° = > 1/√3
hope it helps :
thanks
Similar questions
cos 3A = sin 45,. cos A = cos (90 - 45),
3A = 45 => A = 15,
2A = 30,
Tan 2A = tan 30 = 1/root 3,.