find the value of tan 2A, if cos 3A = sin 45.
Answers
Answered by
6
Here is the solution
=================
cos 3A = sin 45
sin(90 - 3A) = sin 45
90 - 3A = 45
90 - 45 = 3A
45 = 3A
=> A = 45/3 = 15
Now, Tan 2A = Tan (2*15) = Tan 30 = 1/√3 = 0.5773
Hope it helps......
=================
cos 3A = sin 45
sin(90 - 3A) = sin 45
90 - 3A = 45
90 - 45 = 3A
45 = 3A
=> A = 45/3 = 15
Now, Tan 2A = Tan (2*15) = Tan 30 = 1/√3 = 0.5773
Hope it helps......
Answered by
0
cos 3A = sin 45
sin ( 90 - 3A ) = sin 45
∵ cos ∅ = sin ( 90 - ∅)
∴ 90- 3A = 45
∴ 3A = 45
∴ A = 15° .
Now, sin 2A = sin 2*15 = sin 30 = 1/2
and
cos 2A = cos 2*15 = cos 30 = √3 / 2
Now, tan 2A = sin 2A / cos 2A
= [1/2] / [ √3/2]
= 1/√3
∴ tan 2A = 1/√3.
Hope this helps you !
# Dhruvsh
sin ( 90 - 3A ) = sin 45
∵ cos ∅ = sin ( 90 - ∅)
∴ 90- 3A = 45
∴ 3A = 45
∴ A = 15° .
Now, sin 2A = sin 2*15 = sin 30 = 1/2
and
cos 2A = cos 2*15 = cos 30 = √3 / 2
Now, tan 2A = sin 2A / cos 2A
= [1/2] / [ √3/2]
= 1/√3
∴ tan 2A = 1/√3.
Hope this helps you !
# Dhruvsh
Similar questions